N90-27315

OBJECT ORIENTED FAULT DIAGNOSIS SYSTEM
FOR SPACE SBUTTLE MAIN ENGINE REDLINES

John Rogers Saroj Kumar Mohapatra.
Senior Research Associate Graduate Research Assistant

Johnson Research Center
University Of Alabama In Huntsville

ABSTRACT

A great deal of attention has recently been given to Artificial Intelligence research in the area
of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line
parameters, a research effort is under way at the Johnson -Research Center on the campus of
UAH to develop a real time diagnostic tool that will employ historical and engineering rulebases
as well as sensor validity checking. The capability of Al software development tools (KEE & G2)
will be explored by applying object oriented programming techniques in accomplishing the
diagnostic evaluation.

What is an Exper m?

In its simplest sense an “Expert System” is a system which can handle any domain limited
situation as efficiently as a human expert would handle it. The keywords here are domain limited
and human. Here is a simplified example. It might be easy to conceptually perceive a system that
handles the breaking mechanism in an automobile. Now suppose these brakes are hydraulically
activated as are some of the brakes in large trucks. If the system suddenly lost pump pressure due
to some type of power system failure, the system should be expected to determine the element in 1ty
system (namely the pump) was malfunctioning, but probably would not be able to totally
diagnosis the problem as a power failure. The power system is a separate entity in the automobile
and therefore does not fall into the hydraulic systems limited domain. Theoretically the domain ot
an expert system may be as large as the designer desires; however, the larger the system domain.
the larger the knowledge base requirements and the more complex the inference engine.

The second keyword, human, details the performance requirements of the system. The
system must be able to handle a situation that exists within its limited domain as efficiently as a
well trained expert in the field. Though it can not be has not yet begun to reach its size or pattern
matching potential. Also, since the system is currently operating as a stand-alone system and no
sensor input is available, simulation and data file supplied values are driving the system. Output is
restricted to operator notification and suggested corrective procedures by the system. Scan
Intervals are well within one second, yet far from the ultimate goal. These limitations are being
slowly reduced and eventually it is hoped they will be removed entirely.

361

PRECEDING PACE BLAI!X (iOT FILMED

expected to determine the faulty power supply, a properly designed expert system should
immediately identify the pump as the source of the localized problem. Of course, the system is not
doing anything that a human can not do. But for large problems that involve many parameters the
system, if properly designed, can reach the conclusion much faster and free the human expert to be
accomplishing other tasks.

An expert system has three major modules. These are the systems interface with its
environment, the knowledge base of rules and information governing the system, and the user
interface.

Environmeny

Exoen
System
— (O
Intertace

Figure 1

Each of these modules plays an important role in the operational efficiency of the overall
system. If the interface between the environment and the system is inadequate the system will be
unable to properly monitor the environment's condition. If the knowledge base is not complete or
contains erroneous information the system will reach improper conclusions. And finally the system
must be designed so it is easy for the individual to use. Each of these topics will now be
presented.

rf ween th m_and th nvirgnmen

Depending upon the type of expert system under development the interface between the
environment and the system may take on different forms. For example, if the system is being
designed to maintain certain operating parameters in a particular piece of computer software, the
interface may include a communications protocal between the two machines (if they are in tuct
located on separate machines). Or possibly for a mechanical system, the interface between the
mechanism and the expert system monitoring it may be a connection to an analog converter th.t
takes in raw sensor voltages and converts it into meaningful data. Any combination of these form-
is possible. In different systems throughout industry a variety of interfaces have been designed 10
fit the needs of the application.

Regardless of the type of interface, the primary objective is to have as complete u
communication between the environment and the system as possible. Erroneous results would be
produced by a system that has the potential of functioning properly due to simply bad input data
What- ever needs to be included in the interface to insure this communication clarity must be
included. Obviously this is a critical necessity for the system and must be satisfied in order for it 10
monitor the environment correctly.

It is the job of the knowledge engineer to acquire a complete set of facts and rules that

govern the environment. This is accomplished in a variety of ways. First, many processes follow
a given set of engineering and natural laws. The applicable formulations of these laws can be

362

incorporated into the system. Previous or historical data can be interpreted and stored. And
learned and experienced individuals can be interviewed to gain from their knowledge.

The interview method is the most difficult to perform, but often the most beneficial. It is
easy to see how valuable it is to have experience with a certain type of problem. Many times a
process can be completed rather routinely by an individual, but it is time consuming and takes the
individual away from other much needed tasks. This is a perfect example of where the interview
method would readily apply. However, the familiarity with the problem can become a mixed
blessing. Crucial steps in the performance of a task become routine to the expert and might be
omitted in the performance description. Therefore leaving the system designer with an inadequate
instruction set.

Knowledge Base

Perhaps the most difficult task facing the developer of an expert system is constructing the
knowledge base. The knowledge base is a collection of facts and associated rules (sometimes
called the rule base) that are connected with the environment of the expert system. These rules and
facts are based on information gathered by a process called Knowledge Engineering.

Most tasks that humans perform are complex in nature, yet they seem quite simple to the
individual. For example, consider the everyday activities that an ordinary individual might find
themself doing such as brushing their teeth, getting dressed, or preparing a meal. Certainly most
of us know how to perform each of these simple tasks quickly and easily; however, it is not quite
as simple a problem to describe or explain all of the steps that are involved. If one of the steps is
omitted the total process is likely to fail. This knowledge engineer must familiarize himself with the
envirnment that is being monitored. Only then can a successful dialog between himself and the
experts occur. It is his responsibility to question these experts in a manner such as to gain a
complete set of facts and rules governing the specific environment.

User Interface

The user interface is the individuals gateway to the expert system. One of the most often
heard complaint about any software package is the inadequacy of the user interface. A user
interface should be as simple to use as possible, yet have the flexibility to allow the operator the
ability to handle virtually any situation.

There are many different formats for the user interface. It can be menu driven or allow tor
command input lines. It might include mouse sensitive items, help documentation, and meaningtul
error messages for the user. Any or all of these items can help to make a quality user interface
However, remember the most important aspect is usability.

WSME Redline Di :

The current application involves the monitoring and diagnostic analysis of a group of flight
parameters for the Space Shuttle's main engine known as the redlines. These parameters include
the High Pressure Oxidizer Preburner discharge intermediate seal purge pressure, the High
Pressure Oxidizer Turbopump turbine discharge temperature and secondary seal cavity pressure,
the High Pressure Fuel Turbopump turbine discharge pressure, High Pressure Fuel Preburner
coolant liner pressure, and the Preburner shutdown purge pressure.

This system is divided into three subsystems: a monitoring system, a rule based diagnostic

system, and a historical data base of past performance. Each plays an important role in emulating
an expert in the identification and evaluation of possible operating problems.

363

The monitoring system is similar to those in place in many applications around the globe. It
receives sensor data that it compares to a given set of parameter limits. If the data falls within the
acceptable range for each of the redline parameters, then opeations contnue unaffected. However,
if the data does not remain confined between the operational limits, flags are set which indicate a
problem has occurred. At the completion of a given cycle of data entry, these flags are examined.
If they indicate possible problems the diagnosis procedure is initiated.

The diagostic system is a rule based system that forward chains or background chains
through a set of rules and hopefully arrives at a possible conclusion for the situation. For the
SSME redlines these rules consist of engineering and interparameter relationships which must be
maintained. As a conclusion the system may either initiate an attempt to correct the situation and/or
report the probable causes and siggested ways to proceed to the operator.

The diagnostic system should also have a built-in mechanism for validity checking on data.
This is accomplished in this system in two ways. The rule base has certain rules which define
physical laws. If according to these rules all but one dependant parameters abide by these laws or
if data trends for parameters like pressure and temperature exhibit sporadic almost non-continuous
behaviour then there existsd a high probability that the sensors are not functioning properly.

The third sub-system involves pattern matching current data to past experiences. This gives
the system a type of historical prospective on the current events and may indicate the cause of the
current situation based on the causes of the similar historical event. This sub-system is initiated
only if the diagnostic subsystem was unable to arrive at a plausable conclusion. If initiated,
however, the current events are compared to a data base of past events and a ranked list of possible
situations along with a weight factor that describes the degree of parameter matching is returned.

Prototype Development

The original system was prototyped using a software development tool named KEE
(Knowledge Engineering Environment) which is a product by Intellicorp. It was menu driven and
used graphical displays to relate the information to the user. KEE proved to be a good starting
place for the early development. However, time is of primary importance in this system. Each
scan interval for the system is desired to be less than 60 microseconds. Therefore, an alternate
method had to be explored. G2, a real-time expert system, software development tool developed
by Gensym, was selected for the second development.

What is G2

G2 is an advanced tool for developing real time expert systems. Real time expert systems
are programs that can respond intelligently to events as they occur. The need for such systems is
evident in the process and manufacturing evident in the process and manufacturing industries.
telecommunations, medical care, aerospace, robotics, and so on. At the heart of G2 is its ability 10
do the following:

.G2 can scan an application (like an human operator) and can focus on key areas when it detects
potential problems or oppertunities.

.G2 can control events in a continuously changing application. This is possible because of a real
time inference engine that can maintain validity intervals and history for variables.

.G2 can respond to events when they occur (without having to continually poll sensors, for
example.)

364

.G2 allows the application experts to create prototypes rapidly using structured natural language in
an intuitive, graphically oriented environment.

Ldea of developi o G2

To use G2, the developer first describes each class of object in the application, what it
looks like, and what its attributes are. After describing the classes of objects that are found in the
application, the developer can create a model of the application by placing objects on a workspace
and connecting them to show their relationships. Associated with each object is a table that
describes the object. G2 automatically creates this description from the definition of the object
class. After drawing the schematic, the developer writes rules that indicate how to respond and
what to conclude from changing conditions within the application. The developer enters these rules
and all other statements within G2, in structured, natural language using a context-sensitive editor
that guides him through each part of the grammar.

When the knowledgebase is running, G2's real time inference engine uses the rules,
together with data that it receives from the data server (the sensor, G2 simulator, and other external
sources) to infer how to respond to conditions.

The data server attribute indicates where G2 should go to get values for the variables. The
inference engine scans key rules at rates associated with each rule. It focuses on key objects by
trying rules associated with the objects. The inference engine invokes rules of a particular category
for a particular class of objects. It backward chains to other rules to find values and forward chains
to rules when values are found.

The knowledgebase uses the G2 simulator to simulate values for sensors and other
variables while the knowledge base is running. It can solve algebraic difference and first order
differential equations.

The developer also can create operator controls like check boxes, radio buttons, and action
buttons that an operator will be able to use to enter values or to give instructions to G2. The
developer can create displays like graphs, dials, meters or readout tables.

The development of a knowledge base usually proceeds incrementally. To develop a full-
sized application, he proceeds in stages, at each state refining the prototype, adding a little more to
the knowledge base and testing the result. After the knowledge base is built, the developer can
interface to an application using "Gensym Standard Interface.” The expert system can then recei ¢
values from sensors or other sources, set the values of setpoints, write to databases, and so on.

E le of - G2 Redline Impl .

The project required implementing eight parameters: Preburners S.D., HPOP (High
pressure oxidizer pump), HPOT (High pressure oxidizer turbopump), HPFT (High pressure fuel
turbopump), HPFP (High presusre fuel pump), LPOP (low pressure oxidizer turbopump), LPFP
(Low pressure fuel turbopump) and POGO. After creating a workspace those redline parameters
are implemented using different kinds of objects(Figure 1). A superior class object is defined so
that redline parameters can inherit its attributes whenever they need.

365

BN
ANVANAN

NDP AT PAST-VaA wiTesugTORY L TPy

AVAVAVAVA

& AANN

wATER g

Figure 2

G2 has the capabilities to create tables (Figure 3) for each object For example in Figure 3, HPOT
1s the object and the table has user restrictions, where the user can describe the restrictions needed
for HPOT;.HPOT is the class for which also the superior class is redline parameters. Attributes
specific to.the class HPOT are discharge-temp (a quantitative variable), sealactivity pressure (a
quantitative variable), OK (a logical variable), and high (a logical variable). The capabilities and
restrictions of HPOT are "none", change is "none", and menu option is "final menu choice.” In
this case no attributes are inherited, so inherited attributes get the value "none." Default settings for
variables are also "none." Notice the attribute stubs in Figures3. There is a water line output-port
located at left 20; a connection input-port located at right 20. To use the connection between the
instances of objects the user has to define an object called water-line or instrument line. So as
shown on Figure 3 the instrument signal and water-line are defined. The user can define an
instance out of the objects. The last four attributes describe the icon which is used to display the
instance of the object HPOT and can modified to the designer's specifications.

oty | O) aaln Bs B0 ¥ o0 2

Ve et ghans | pmn

Joew i | ndpUENETN
AYODe Poal ® M0 | GrtwPRND ¥ e By 5

Figure 3

After creating the instances of objects, the user can see the table for that instance by
selecting it with the mouse, that is automancally created by G2 like Figure 4. For each attribute in

366 I
omaNeL FALh B

o POOR QUALITY

the table, simulation details can be written on a specific subtable. The use can get a value for any
attribute using the G2 simulator, the inference engine, or from outside files and sensors. After
considering where to get values for all the attributes of the instances, the user can write rules on the
workspaces attached to object definitions, the instances, and G2 itself like the example given below
for HPOT. Each rule has its own table and G2 scans keyrules at rates associated with each rule.
For example in the figure 4.1, the scan interval is one second. The scan interval provides a way to
regularly invoke a rule to monitor an event. The value of the scan interval tells G2 how often to
invoke the rule. The user can follow rule firing path since everytime G2 fires a rule using forward
chaining or backward chaining it highlights that rule.

Nows
User restrictons

Trecing end breshpeintd
Oete typs

Lant recorded value | 0
Vellty mierve | adefnie
Forrmde
Somsaton detals | decrete-sasta, with iyl velue &, and

irotd vehue for somdetion | §
Outs server | G2 sivniduter
Detuudl updute marvel | 1 second
History keeping spec | kmap Netery

Trecng 3nd breskporty | defudt

o T dochurgenemp of hpet >+ 23 Tan riorm $u apersier et
“This 18 the upper bt far dechrgenerg of Tpof’ and rotme oot
» by 90 dogress

Scan veerve | | secend
Fecal ciseses | NORS
Focal abjects | nene
Categanes | none
s promty | &

mlmuammi'
i
rmmmmlmw

Figure 4.1

[nwemnces of @terars capecn]

Figure 4.2

(ol jon of Intelligent Fault Disgnosis Using G2

As described before to create any instance, an object should be defined. So for the
S.S.M.E project in order to describe the project and to create icons which will have its own
workspaces, the utility icon, the documentatio-details and KB -details are defined (Figure 5). An
icon library is created as shown on the Figure 6, so that it will help the user to extend the system
whenever he wants. As shown on the workspace (definitions) on Figure 7, the icons are defined
from documentation-detail and KB-detail objects. On the subworkspace of "about-objects” we
have successfully implemented eight redline parameters (Figure 2). Then as described before the
instances for all these paramenters are created by defining the artributes on the subtables attached to
them (Figure 3). To give a nice idea about the instances of objects, a new workspace is created
and all the instances of redline parameters objects are defined on that workspace (Figure
4.2).Values for those instances of the objects are obtained using G2 simulator, inference engine
and data files simulating sensors..As descirbed before, each instance has its own subtable, which
has its own specific subtable where we defined our simulation formula as the abstract shown on
Figure 8 for HPOT redline parameter.

“A

TR TV-1CON

The purpese of Tus szpert Fystem @ %o
deveiep o reat tme dagnostic el hat vl
evehaste reding peramsters on T specs

estoryesl end engreering nis beses w OOQAETATIONOITALS

X$-0CTALS

368 SHAL PAGE fs

S SOUR QUALITY

.
(E=h (=

ABOUT-O0ECTY GO, SR

el

ASOUT- B OPIRT-SYETD

Figure. 7

Netes | OX
User restrictions | neme
Time ncrement for updets | nome

Shmdsten ferwuds ‘“J‘ﬂ"ﬂ-(l'.‘h
e Bms / 2)) ¢ 21, v evtnt
vahe 0

Hstory keeping spes | Lesp Netery

Figure 8

After making sure that all the redline parameters are getting values, rules are implemented.
The rule groups are devided into three parts: local rules, global rules and chained rules. Local rules
are implemented on the workspace attached to object definitions. Global rules relate two or me
things at a time and can be fired (Figure 9). Chained rules first try to get a conclusion from global
or local rules and then try to find another solution for that conclusion (Figure 10).

The rule base is traversed after each intermediate conclusion is reached until all possible
paths have been taken. Sometimes logical variables are used for some redline parameters like low,
OK, and high. The low, OK, and high variables have values attached with them. These are the
limitations for a particular instance. For example if the attribute dischargetemp of HPOT is greater
than high or low or OK then after G2 fires the rule the operator can get the message. We have
implemented graphs as shown on Figure 11 to display the result of realtime systems by keeping u
history.

il e hpfastinedechurgetony of hph-p
»e the Ngh of hpf-p and e
":,,,:":"""'M»-um rofpcocirinearprass of ho.Lp-9 o
e bt tor o T 8 0 Neh of hpip-p o4 T produner .
oot purge-gress of prebumery >« he ok of
i re ety by 20 degrees mmmn:-
17 64 of hoor @ Tve S oo fut YPPT SENSOR 1S AT
Oparster hat THE SEALACTIV h
ms““,,o,.”lu;‘_" |m|
Figure 9
-) 369
. Ta N
::’A:V TR - b “L ié;
LS B] \‘; g_:?_‘{

370

¥ e conmants of Rp.L-p « BLEEDEN
VALVE IS NOT FUNCTIONING
PROPERLY" ond 1he s of predumar-
¥ is NOT-ALAIGHT S ivlom e
eperster st “THE SUBDEA VALVE OF
HPPP 1S NOT DOING QOO0 AND
PREBURNER NEEDS CHECKING®

a1 A
LA
o]

e commants of A p.Lp-® « BLEIDER

Figure 10

Figure 11

AT ST AN o
r.);""ih:!‘i;ﬂ‘g_ i"i‘i?d!i' 5:1

Gf POUOR QUALITY

Through the message board of G2 the diagnostic system communicates to the operator.
When the diagnostic system fires the rules different kinds of messages appear on the message
board as shown on the Figure below

MESSAGE-BOARD

21868 10:4203 am THERE IS A SEAL
LEAK

21868 104206 am CONTROLLER VALVE
IS FUNCTIONING IMPROPERLY

#1069 104204 am this i the lower Imk of
lpopdschmmsmwdﬂs!s

21870 10:42.04 am THE SEALACTIVITY
PRESSURE OF HPOT-TP IS OK

21873 104205 am THE SEALACTIVITY
PRESSURE OF HPOT-TP IS OK

21874 10:4205 am HPOP INTERMEDIATE
SEAL PURGE PRESSURE JUST REACHED
ITS LOW LEVEL WHICH IS 170

71871 104204 am HPOP INTBRMEDIATE
SEAL PURGE PRESSURE JUST REACHED
ITS LOW LEVEL WHICH IS 170

21878 104208 am THE BLEEDER VALVE
OF HPFP 1S NOT DOING GOOD AND
PREBURNER NEEDS CHECXING

Figure 12

Currently the system contains approximately twenty-five rules which attempt to bind the
eight redline parameters. Historical data has been difficult to obtain and consequently that data
base has not yet begun to reach its size or pattern matching potential. Also, since the system 1s
currently operating as a stand-alone system and no sensor input is available, simulation and data
file supplied values are driving the system. Output is restricted to operator notification and
suggested corrective procedures by the system. Scan Intervals are well within one second, yet tar
from the ultimate goal. These limitations are being slowly reduced and eventually it is hoped the}
will be removed entirely.

Closing Note

The S. S. M. E. real-line diagnostic system is a good start toward a viable tool. Currently.
even using G2, the system is much too slow and the rule and historical data bases are too limited
for it to ever be considered for an online control system. However, the system does show potential
as an analysis aid for engineers working with the S.S.M.E.

The next phase of the systems development will address these problems by increasing the
number of historical database entries as well as continued exploration into methods of speeding up
the programs execution. The primary objective of the project is to prove the feasibility of the
concept of an extended diagnostic system (o S. S. M. E. In this respect the program 1s
succeeding.

CRICINAL PAGE IS

OF POOR QUALITY 371

REFERENCES

Ali, M.,Schrnhorst, D.A."Sensor-based Fault Diagnosis in a Flight Expert System."
Proceedings of the Second Conference on Artificial Intelligence Applications, Miami
Beach, FL, December 11-13, 1985.

Firebaugh, Morris W.; Artificial Intelligence, "A Knowledge Based Approach.” Published
by PWS-Kent, Boston.

Fox, Mark S., Lowenfeld, Simon and Kleinosky, Pamela "Techniques For Sensor-based
Diagnosis," Carnegie-Mellon University, The Robotics Institute Technical Report, 1983.

"G2 user's manual” Version 1.1, 1988

Harmon, Paul and King,David "Expert Systems,” Antificial Intelligence in Business; edited
by Theron Shrene, 1985.

Palmer, Michael T., Abbott,Kathy H., Schutte,Paul C. and Ricks, Wendell R.,
"Implementation of a Research Prototype On-board Fault Monitoring and Diagnosis
System," AIAA Conference of Computers in Aerospace, Massachusetts, 1987.

Schamnhorst, Dean A."On the role of Artificial Intelligence In SSS Computer- aided

diagnosis ", The University Of Tennessee Space Institute, Knowledge Engineering
Laboratory

372

